Motor cortex dysfunction in complex regional pain syndrome.
نویسندگان
چکیده
OBJECTIVE Most patients with complex regional pain syndrome (CRPS) exhibit debilitating motor symptoms. The effect of continuous pain on motor system in CRPS, however, is not well known. We searched for signs of motor cortex dysfunction in chronic CRPS type 1 patients with motor impairment. METHODS We recorded rhythmic brain activity with magnetoencephalography (MEG) during noxious thulium-laser stimulation of both hands in eight CRPS patients and eight control subjects. We measured excitability of the motor cortex by monitoring the reactivity of the approximately 20-Hz motor cortex rhythm to laser stimuli. The reactivity was defined as a sum of the stimulus-induced suppression and the subsequent rebound of the approximately 20-Hz rhythm. RESULTS In CRPS, the reactivity of the approximately 20-Hz rhythm in the hemisphere contralateral to the painful hand was significantly weaker than in control subjects. The reactivity correlated with the mean level of the spontaneous pain (r=-0.64, P=0.04). Suppression of the approximately 20-Hz rhythm correlated with the grip strength in the painful hand (r=0.66, P=0.04). CONCLUSION Continuous pain in CRPS is associated with attenuated motor cortex reactivity. SIGNIFICANCE Abnormal motor cortex reactivity may be linked with motor dysfunction of the affected hand in CRPS.
منابع مشابه
Primary motor cortex function in complex regional pain syndrome: a systematic review and meta-analysis.
UNLABELLED Dysfunction in the central nervous system is thought to underlie the movement disorders that commonly occur in complex regional pain syndrome (CRPS), with much of the literature focusing on reorganization of the primary motor cortex (M1). Presumed changes in the M1 representation of the CRPS-affected body part have contributed to new CRPS treatments, which are increasingly being inte...
متن کاملBilateral somatosensory cortex disinhibition in complex regional pain syndrome type I.
OBJECTIVE In a previous study, we found bilateral disinhibition in the motor cortex of patients with complex regional pain syndrome (CRPS). This finding suggests a complex dysfunction of central motor-sensory circuits. The aim of our present study was to assess possible bilateral excitability changes in the somatosensory system of patients with CRPS. METHODS We measured paired-pulse suppressi...
متن کاملThe motor system shows adaptive changes in complex regional pain syndrome.
The complex regional pain syndrome (CRPS) is a disabling neuropathic pain condition that may develop following injuries of the extremities. In the present study we sought to characterize motor dysfunction in CRPS patients using kinematic analysis and functional imaging investigations on the cerebral representation of finger movements. Firstly, 10 patients and 12 healthy control subjects were in...
متن کاملComplex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to co...
متن کاملCase report: Long-standing complex regional pain syndrome relieved by a cephalosporin antibiotic.
We describe a young woman who had had treatment-refractory complex regional pain syndrome (CRPS) for 6 years before receiving antibiotic treatment with cefadroxil (a cephalosporin derivative) for a minor infection. Cefadroxil reduced the patient's pain and motor dysfunction (dystonia and impaired voluntary movement) within days; the pain and motor disorder returned when cefadroxil was discontin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 121 7 شماره
صفحات -
تاریخ انتشار 2010